APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS: UNIFORM CONVERGENCE AS IMPLIED BY MEAN CONVERGENCE(1)

BY J. L. WALSH

In three recent notes [1], [2], [3] I have discussed uniform convergence by polynomials (in the complex variable) to a given function as a consequence of convergence in the mean of those polynomials to the given function, and also convergence in the mean of one order as a consequence of convergence in the mean of a lower order. The present note contains analogs of those results, but now for approximation by bounded analytic functions. As a first illustration of the new results, we have

Theorem 1. Let Γ be an analytic Jordan curve contained in the simply-connected region D of the z-plane, and suppose we have for some function f(z) continuous on Γ and functions $f_n(z)$ analytic in D

(1)
$$\int_{\Gamma} |f(z)-f_n(z)|^q |dz| \leq A/n^{q\alpha}, \qquad q > 0,$$

$$(2) |f_n(z)| \leq AR^n, z \text{ in } D.$$

Then for $\alpha+1/p-1/q>0$ and $0 < q < p \le \infty$ we have for the pth power norm on Γ

(3)
$$||f(z)-f_n(z)||_n \leq A/n^{\alpha+(1/p)-(1/q)}.$$

Here and below the constants A are independent of n and z, and may change from one inequality to another.

For $p=\infty$ we consider the first member of (3) as the Tchebycheff (uniform) norm of $[f(z)-f_n(z)]$ on Γ , with a similar interpretation in later formulas. As is usual in the study of convergence by bounded analytic functions, we note (see for instance [4, §2.2]) that there exist for each n and N polynomials $P_{n,N}(z)$ of respective degrees N such that we have

(4)
$$|f_n(z) - p_{n,N}(z)| \le AR^n/R_1^N, \quad z \text{ on } \Gamma, \quad R_1 > 1.$$

If we choose the integer λ so large that $R_1^{\lambda} > R$, there follow

$$|f_n(z) - p_{n,\lambda n}(z)| \le A(R/R_1^{\lambda})^n, \quad z \text{ on } \Gamma,$$

(6)
$$\int_{\Gamma} |f_n(z) - p_{n,\lambda n}(z)|^q |dz| \leq A/n^{q\alpha}.$$

Presented to the Society, August 23, 1966; received by the editors September 9, 1966.

⁽¹⁾ Research sponsored (in part) by the Air Force Office of Scientific Research.

Standard algebraic inequalities depending on q yield by (1) and (6)

(7)
$$\int_{\Gamma} |f(z)-p_{n,\lambda n}(z)|^{q} |dz| \leq A_{0}/n^{q\alpha}.$$

The polynomials $p_{n,\lambda n}(z)$ are defined only for the degrees $\lambda n = \lambda, 2\lambda, 3\lambda, \ldots$, but to obtain polynomials $P_m(z)$ for all degrees we may set $P_m(z) = p_{n,\lambda n}(z)$ for $\lambda n \le m < \lambda(n+1)$, whence for $m = 1, 2, 3, \ldots$

$$\int_{\Gamma} |f(z) - P_m(z)|^q |dz| \le \frac{A_0}{n^{q\alpha}} \le \frac{A_1}{[\lambda(n+1)]^{q\alpha}} \le \frac{A_1}{m^{q\alpha}},$$

provided $A_1 \ge A_0 \lambda^{q\alpha} (n+1)^{q\alpha} / n^{q\alpha}$ for all *n*. Consequently f(z) has various known properties on Γ . Thus by [3, Theorem 11] we have (since $\alpha + 1/p > 1/q$)

(8)
$$||f(z)-p_{n,\lambda n}(z)||_p \leq A/n^{\alpha+(1/p)-(1/q)}.$$

Inequality (8) together with (5) now yields (3).

The reader may notice the validity of

COROLLARY 1. In Theorem 1 the second member of (1) may be replaced by $A\varepsilon_n^q$, where ε_n (>0) is monotonic nonincreasing as n increases, is such that $r^n = o(\varepsilon_n)$ for every r (<1), with the property $\varepsilon_n = O(\varepsilon_{\lambda n})$ whenever integral $\lambda > 1$, and where the expression $(2^{m-1} \le n < 2^m)$,

(9)
$$\frac{2^{mr}\varepsilon_n+2^{(m+1)r}\varepsilon_{2^m}+2^{(m+2)r}\varepsilon_{2^{m+1}}+\cdots}{n^r\varepsilon_{n}}, \quad p\geq 1,$$

(10)
$$\frac{(2^m)^{pr}\varepsilon_n^p + (2^{m+1})^{pr}\varepsilon_{2^m}^p + (2^{m+2})^{pr}\varepsilon_{2^{m+1}}^p + \cdots}{n^{pr}\varepsilon_2^p}, \qquad p < 1,$$

where r=1/q-1/p, has a meaning and is bounded as $n \to \infty$; the second member of (3) is to be replaced by $An^{1/q-1/p}\varepsilon_n$, assumed to approach zero.

In the proof, the second members of (6), (7), and (8) are to be replaced by $A\varepsilon_n^q$, $A_0\varepsilon_n^q$, $An^{1/q-1/p}\varepsilon_n$ respectively.

Both Theorem 1 and Corollary 1 can be modified in hypothesis and conclusion so that the first member of (1) is a double integral taken over the interior of Γ , as we now indicate.

First we state a result [3, Theorem 14] on degree of convergence by polynomials:

THEOREM 2. Let E be the closed interior of an analytic Jordan curve, and let a function f(z) continuous on E and polynomials $p_n(z)$ of respective degrees n be given such that we have for the qth power norm on E

(11)
$$||f(z)-p_n(z)||_q \le \varepsilon_n, \qquad q > 0$$

and where ε_n has the first three properties of Corollary 1. Let us suppose the expression (9) or (10) with r replaced by s=2/q-2/p exists and is bounded as $n\to\infty$, where $2^{m-1} \le n < 2^m$. Then we have for $0 < q < p \le \infty$,

(12)
$$||f(z) - p_n(z)||_p' \le A n^{2/q - 2/p} \varepsilon_n,$$

where the second member is supposed to approach zero. In particular we may choose $\varepsilon_n = n^{-\alpha}, \ \alpha > 2/q - 2/p.$

Second, we indicate the analog of Theorem 2 for approximation by bounded analytic functions, which is thus an extension of Theorem 2, in the spirit of Theorem 1 and its Corollary as an extension of [1, Theorem 2].

THEOREM 3. Let E be the closed interior of an analytic Jordan curve contained in the simply-connected region D, and suppose some function f(z) analytic interior to E, continuous on E, and functions $f_n(z)$ analytic throughout D satisfy

(13)
$$\iint_E |f(z)-f_n(z)|^q dS \leq A/n^{q\alpha}, \qquad q > 0,$$

$$|f_n(z)| \le AR^n, \quad z \text{ in } D.$$

Then for $\alpha > 2/q - 2/p$ and $0 < q < p \le \infty$ we have

(15)
$$||f(z)-f_n(z)||_p' \leq A/n^{\alpha+2/p-2/q}.$$

Theorem 3 follows by the methods of proof of [1, Theorem 4] and the present Theorem 2. Like Theorem 1, Theorem 3 can be generalized in a suitable corollary:

COROLLARY 1. In Theorem 3 the second member of (13) may be replaced by $A\varepsilon_n^q$ where ε_n (>0) is arbitrary monotonic nonincreasing, and is such that $r^n = o(\varepsilon_n)$ for every r (<1), with the property $\varepsilon_n = O(\varepsilon_{\lambda n})$ whenever integral $\lambda > 1$, and where the expression (9) or (10) with r replaced by s has a meaning and is bounded as $n \to \infty$, with $2^{m-1} \le n < 2^m$. The second member of (15) is to be replaced by $An^{2/q-2/p}\varepsilon_n$, and is assumed to approach zero.

The preceding results, primarily relating to approximation by bounded analytic functions, have an analog for approximation on a curve rather than in a region:

THEOREM 4. Let Γ be an analytic Jordan curve contained in a region D not necessarily simply-connected, and suppose we have for some function f(z) continuous on Γ and functions $f_n(z)$ analytic in D

(16)
$$\int_{\Gamma} |f(z)-f_n(z)|^q |dz| \leq A\varepsilon_n^q, \quad q > 0,$$
(17)
$$|f_n(z)| \leq AR^n, \quad z \text{ in } D,$$

$$|f_n(z)| \le AR^n, \quad z \text{ in } D,$$

where ε_n (>0) is monotonic nonincreasing, is such that $r^n = o(\varepsilon_n)$ for every r (<1), and with the property $\varepsilon_n = O(\varepsilon_{\lambda n})$ whenever integral $\lambda > 1$, and where the expression (9) or (10) has a meaning and is bounded as $n \to \infty$, with $2^{m-1} \le n < 2^m$. Then if $n^{1/q-1/p}$ $\varepsilon_n \to 0$ and $0 < q < p \le \infty$, we have for the pth power norm on Γ

(18)
$$||f(z)-f_n(z)||_p \leq An^{1/q-1/p}\varepsilon_n.$$

In particular we may choose $\varepsilon_n = n^{-\alpha}$, $\alpha > 1/q - 1/p$.

In the proof of Theorem 4, we assume the origin to lie interior to Γ , approximate the $f_n(z)$ on Γ by polynomials in z and 1/z, and use the method of [3]. Details are left to the reader.

Theorem 4 applies to approximation on the unit circumference Γ to a real or complex function f(z) by real or complex bounded analytic functions $f_n(z)$, or with the substitution $z = e^{i\theta}$, approximation on the real line $-\infty < \theta < \infty$ to a function with period 2π by bounded analytic functions with period 2π in a strip containing the line. In particular if $f_n(z)$ is a polynomial in z and 1/z of degree n satisfying (16), then (17) follows if D is an annulus containing Γ in its interior with boundary components having 0 as center, and $f_n(e^{i\theta})$ is a trigonometric polynomial of order n. Compare here [2, Theorems 6–9].

Theorem 4 suggests approximation by bounded analytic functions in a multiply connected region, as measured by a line integral over the boundary:

THEOREM 5. Let E be a closed bounded region whose boundary Γ consists of a finite number of mutually disjoint analytic Jordan curves, and which lies in a region D. Suppose for some function f(z) analytic interior to E and continuous on E and for functions $f_n(z)$ analytic in D we have (16) and (17), where ε_n satisfies the conditions of Theorem 4. Then if $n^{1/q-1/p}\varepsilon_n \to 0$ and $0 < q < p \le \infty$ we have (18) for the pth power norm on Γ . In particular we may choose $\varepsilon_n = n^{-\alpha}$, $\alpha > 1/q - 1/p$.

To prove Theorem 5, we merely apply Theorem 4 to each component of Γ and of f(z).

Our primary topic in the foregoing theorems is degree of uniform convergence of the $f_n(z)$ to f(z), so it is natural to assume those functions continuous in the closed regions considered. Some comments on uniform convergence in subregions as a consequence of mean convergence on the boundary or over a region are made in [5, §5.8].

We proceed to study the analog of Theorem 5, using as norm a double integral, whose proof is more involved than that of Theorem 5:

THEOREM 6. Let E be a closed bounded region whose boundary Γ consists of a finite number of mutually disjoint analytic Jordan curves, and which lies in a region D. Suppose for some function f(z) analytic interior to E, continuous on E, and for functions $f_n(z)$ analytic in D we have

(19)
$$\iint_{\mathcal{E}} |f(z) - f_n(z)|^q dS \leq A \varepsilon_n^q, \qquad q > 0,$$

and (14), where ε_n satisfies the conditions of Corollary 1 to Theorem 3. Then if $n^{2/q-2/p}\varepsilon_n \to 0$ and $0 < q < p \le \infty$ we have

(20)
$$||f(z)-f_n(z)||_p' \leq An^{2/q-2/p} \varepsilon_n,$$

where we assume the second member approaches zero. In particular we may choose $\varepsilon_n = n^{-\alpha}$, $\alpha > 2/q - 2/p$.

Let the components of Γ be $\Gamma_1, \Gamma_2, \ldots, \Gamma_{\nu}$ where Γ_1 bounds a closed finite region E_1 containing E, and Γ_j (j>1) bounds a closed infinite region E_j containing E. Let Γ'_j be a variable analytic Jordan curve interior to E $(j=1, 2, \ldots, \nu)$ which together with Γ_j bounds a closed annular region G_j , where the G_j are mutually disjoint. Since the curve Γ'_j lies in E, there follows from (19) by [5, §5.3, Lemma 2]

$$|f(z)-f_n(z)| \le A\varepsilon_n, \quad z \text{ on } \Gamma_j',$$

where A varies with Γ'_{t} .

If z is an arbitrary point interior to E, the Γ'_j can be chosen so that z lies exterior to the G_j , and indeed z lies interior to the region bounded by all ν of the Γ'_j . For this point z, the value of f(z) is represented by the Cauchy integral of f(z) over $\sum \Gamma'_j$, so we may write $f(z) = \sum f^{(j)}(z)$ for z interior to E, and similarly $f_n(z) \equiv \sum f^{(j)}_n(z)$ for z interior to E, where the ν components $f^{(j)}(z)$ and $f^{(j)}_n(z)$ of f(z) and $f_n(z)$ are represented by the Cauchy integrals of f(z) and $f_n(z)$ over the respective Γ'_j but are independent of the Γ'_j having the required properties. By inequality (21) we have for z on any closed subset of E disjoint from G_j

(22)
$$|f^{(j)}(z) - f_n^{(j)}(z)| \le A\varepsilon_n \qquad (j = 1, 2, ..., \nu).$$

The functions $f^{(j)}(z)$ and $f_n^{(j)}(z)$ are defined throughout the interior of E_j and inequality (22) is valid also for z on $E_j - G_j$ minus a neighborhood of Γ'_j .

It is natural to attempt to use (22) to obtain an inequality on the functions $f^{(j)}(z) - f_n^{(j)}(z)$ on each E_k , but this procedure is complicated by the fact that $\nu - 1$ of these regions are infinite and the surface integral norm cannot be used directly.

We may choose points $\alpha_1 = \infty$, $\alpha_2, \ldots, \alpha_v$ fixed in the respective regions D_1, D_2, \ldots, D_v exterior to E bounded by $\Gamma_1, \Gamma_2, \ldots, \Gamma_v$, and choose in each D_j and in D an analytic Jordan curve Γ_j'' separating α_j from E but so that the region D_0 bounded by $\sum \Gamma_j''$ contains no point not in D. The components of $f_n(z)$ already defined can be represented by Cauchy integrals of $f_n(z)$ over the curves Γ_j'' , and we have by (14)

$$|f_n^{(j)}(z)| \leq AR^n, \quad z \text{ in } D_j^0,$$

where D_j^0 is a suitable closed region containing E_j in its interior and separated by Γ_j'' from α_j .

We fasten our attention now on E_1 , $f^{(1)}(z)$, and $f_n^{(1)}(z)$. Inequality (22) yields

$$|f^{(j)}(z)-f_n^{(j)}(z)| \leq A\varepsilon_n, \quad z \text{ on } G_1, \quad j>1,$$

$$\iint_{G_1} \sum_{j>1} |f^{(j)}(z)-f_n^{(j)}(z)|^q dS \leq A\varepsilon_n^q,$$

and by (19) with the integral over G_1 there follows

(24)
$$\iint_{G_{n}} |f^{(1)}(z) - f_{n}^{(1)}(z)|^{q} dS \leq A \varepsilon_{n}^{q}.$$

The point set G_1 is to some extent variable, so we deduce also by (22) and by the finiteness of the area of E_1 ,

(25)
$$\iint_{E_1-G_1} |f^{(1)}(z)-f_n^{(1)}(z)|^q dS \le Ae_n^q,$$

where the new $E_1 - G_1$ contains in its interior the partial boundary Γ'_1 of the G_1 in (24). Then by (24) and (25) we have

(26)
$$\iint_{E_1} |f^{(1)}(z) - f_n^{(1)}(z)|^q dS \le A \varepsilon_n^q.$$

By (23) and (26) we are in a position to apply Corollary 1 to Theorem 3, which establishes

(27)
$$\iint_{\mathbb{R}} |f^{(1)}(z) - f_n^{(1)}(z)|^p dS \le A n^{2p/q - 2} \varepsilon_n^p;$$

the integral may be taken over E_1 or E. This proof does not apply directly to (27) with 1 replaced by j (>1) because the area of E_j is then infinite.

However, for j > 1 we make a linear transformation $w = \phi(z)$ that carries α_j to infinity, which then transforms E_j into a finite region of the w-plane. By the method of proof of (24) we establish

$$\iint_{G_j} |f^{(j)}(z) - f_n^{(j)}(z)|^q dS \leq A \varepsilon_n^q, \qquad dS = dS_z.$$

With the transformation $w = \phi(z)$, $z = \psi(w)$, we may set $dS_w = |\phi'(z)|^2 dS_z$, where $|\phi'(z)|$ is bounded and bounded from zero except near $z = \alpha_j$ and $z = \infty$ and their images, whence for the integral over the image of G_j

(28)
$$\iint |f^{(j)}[\psi(w)] - f_n^{(j)}[\psi(w)]|^q dS_w \leq A\varepsilon_n^q.$$

By (22) we may write (28) for the integral over the image of a new $E_j - G_j$ containing the partial boundary Γ'_j of the previously used G_j (by the boundedness of the area of the image of E_j). There follows for the integral over the image of E_j this same inequality (28).

By virtue of (23) interpreted in the w-plane, we can now apply Corollary 1 to Theorem 3, which proves for the integral over the image of E_t or E

$$\iint |f^{(j)}[\psi(w)] - f_n^{(j)}[\psi(w)]|^p dS_w \le A n^{2p/q - 2} \varepsilon_n^p.$$

We use this integral over the image of E, on which $\psi'(w)$ is bounded and bounded from zero, so there follows (j>1)

$$\iint_{\mathbb{F}} |f^{(j)}(z) - f_n^{(j)}(z)|^p dS_z \le A n^{2p/q - 2} \varepsilon_n^p,$$

and (27) yields (20), which completes the proof of Theorem 6.

We add now some general comments on the theorems already proved. If the $f_n(z)$ of Theorem 1 are polynomials of respective degrees n satisfying (1), inequality (2) is a consequence of (1). For inequality (1) implies the boundedness $(n \to \infty)$ of

(29)
$$\int_{\Gamma} |f_n(z)|^q |dz|,$$

and (2) follows where D is an arbitrary finite region bounded by a level locus Γ_R , by [5, §5.2, Lemma]. Here we denote generically by Γ_ρ ($\rho > 1$) the locus $|\phi(z)| = \rho$ in the complement K of E, where $w = \phi(z)$ maps K onto |w| > 1, $\phi(\infty) = \infty$. A more general remark can be made:

REMARK. Let E be a closed limited point set whose complement is simply connected and whose boundary Γ has positive linear measure. If the rational functions $f_n(z)$ of respective degrees n satisfy (1), and if the poles of the $f_n(z)$ have no limit point on E, then for a suitably chosen region D containing E, inequality (2) is satisfied.

An inequality

(30)
$$\int_{\Gamma} |f_n(z)|^q |dz| \leq L^q, \qquad q > 0,$$

follows by the method of treatment of (29). If the $f_n(z)$ have no poles on or interior to Γ_B , B > 1, then [5, §9.8, Lemma III] we have for z on and within Γ_Z

(31)
$$|f_n(z)| \le AL[(BZ-1)/(B-Z)]^n, \quad 1 < Z < B,$$

so we may choose D as the closed interior of Γ_z by identifying (31) with (2).

The Remark just established deserves a number of additional comments.

- 1°. It is immaterial whether the hypothesis of the Remark is chosen as (1) or as the replacement of (1) as in Corollary 1 to Theorem 1. In either case we obtain (30) at once.
 - 2°. Let the hypothesis (1) of the Remark be replaced by the inequality

$$|f(z)-f_n(z)| \leq A\varepsilon_n, \quad z \text{ on } \Gamma.$$

The uniform boundedness of the rational functions $f_n(z)$ follows on Γ , and an appropriate lemma [5, §9.7, Lemma I] yields (31) for z on or within Γ_z if all poles of the $f_n(z)$ lie exterior to Γ_B , 1 < Z < B. Thus D can be chosen as the interior of Γ_z . This comment is of interest in connection with approximation also in the real domain, as in [6].

3°. The hypothesis of the Remark may be replaced by an inequality for the double integral:

(33)
$$\iint_{\mathbb{R}} |f(z) - f_n(z)|^q dS \leq A \varepsilon_n^q,$$

say under the hypothesis of Theorem 2, where the rational functions $f_n(z)$ of respective degrees n have no limit point of poles on E. We obtain the boundedness of the integrals

$$\iint_{\mathbb{R}} |f_n(z)|^q dS,$$

hence [5, §5.3, Lemma II] there follows on an arbitrary closed region E' interior to E the uniform boundedness of the $f_n(z)$. Let the poles of the $f_n(z)$ have no limit point on or exterior to E_ρ , $\rho > 1$. Then for E' sufficiently large in E, the locus $(E')_\rho$ can be chosen as near E_ρ as desired (but interior to E_ρ), so in particular we can choose E' so that $(E')_\rho$ contains in its interior some E_B , B > 1, which contains E in its interior. If $|f_n(z)| \le L$ for E', we have for E'0 on E'1 (chosen to contain E1 and be contained in E_B 1)

$$|f_n(z)| \leq AL[(\rho Z - 1)/(\rho - Z)]^n, \quad 1 < Z < \rho,$$

by [5, §9.7, Lemma I]. The region D can be chosen as the interior of $(E')_z$.

- 4° . The Remark can be extended so as to apply even if the complement of E is not simply connected, provided the boundary of E consists of a finite number of mutually disjoint analytic Jordan curves. We assume that $f_n(z)$ is a sequence of rational functions of respective degrees n whose poles have no limit point on E; it follows for instance that inequality (16) implies (17). Compare here Theorem 4 and [2, Theorems 6, 7, and 8].
- 5° . The reasoning involved in the Remark may apply even if the approximating functions $f_n(z)$ are no longer rational functions, provided each $f_n(z)$ is meromorphic with not more than n poles in each of one or more suitable regions. For instance we might consider approximation on a Jordan curve E containing in its interior a closed simply connected region E_0 , where the functions $f_n(z)$ are respectively meromorphic with no more than n poles in the complement E_1 of E_0 , continuous and bounded on the boundary of E_0 .

Throughout this paper we have assumed for simplicity that the Jordan curves involved are analytic. That assumption can be somewhat weakened, as by the use of curves of type B in [1], and of type B' in [2].

REFERENCES

- 1. J. L. Walsh, Approximation by polynomials: uniform convergence as implied by mean convergence, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 20-25.
- 2. ——, Approximation by polynomials: uniform convergence as implied by mean convergence. II, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1405–1407.
- 3. ——, Approximation by polynomials: uniform convergence as implied by mean convergence. III, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1406-1408.
- 4. ——, Approximation by bounded analytic functions, Mémor. Sci. Math., Fasc. 144, Gauthier-Villars, Paris, 1960.
- 5. ——, Interpolation and approximation, Colloq. Publ., Vol. 20, Amer. Math. Soc., Providence, R. I., 1935.
- 6. ——, Degree of approximation by rational functions and polynomials, Michigan Math. J. (to appear).

University of Maryland, College Park, Maryland